652 research outputs found

    Circinus X-1: survivor of a highly asymmetric supernova

    Full text link
    We have analyzed the kinematical parameters of Cir X-1 to constrain the nature of its companion star, the eccentricity of the binary and the pre-supernova parameter space. We argue that the companion is most likely to be a low-mass (< 2.0 M_sun) unevolved star and that the eccentricity of the orbit is 0.94 +/- 0.04. We have evaluated the dynamical effects of the supernova explosion and we find it must have been asymmetric. On average, we find that a kick of 740 km/s is needed to account for the recently measured radial velocity of +430 km/s (Johnston, Fender & Wu) for this extreme system. The corresponding minimum kick velocity is 500 km/s. This is the largest kick needed to explain the motion of any observed binary system. If Cir X-1 is associated with the supernova remnant G321.9-0.3 then we find a limiting minimum age of this remnant of 60000 yr. Furthermore, we predict that the companion star has lost 10% of its mass as a result of stripping and ablation from the impact of the supernova shell shortly after the explosion.Comment: 6 pages, 3 figues, 2 tables, accepted for publication in MNRA

    Morphological Properties of PPNs: Mid-IR and HST Imaging Surveys

    Full text link
    We will review our mid-infrared and HST imaging surveys of the circumstellar dust shells of proto-planetary nebulae. While optical imaging indirectly probes the dust distribution via dust-scattered starlight, mid-IR imaging directly maps the distribution of warm dust grains. Both imaging surveys revealed preferencially axisymmetric nature of PPN dust shells, suggesting that axisymmetry in planetary nebulae sets in by the end of the asymptotic giant branch phase, most likely by axisymmetric superwind mass loss. Moreover, both surveys yielded two morphological classes which have one-to-one correspondence between the two surveys, indicating that the optical depth of circumstellar dust shells plays an equally important role as the inclination angle in determining the morphology of the PPN shells.Comment: 6 pages + 8 figures, to appear in the proceedings of the conference, "Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution", Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorny. Figures have been degraded to minimize the total file siz

    Evolution of a 3 \msun star from the main sequence to the ZZ Ceti stage: the role played by element diffusion

    Full text link
    The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. In particular, we follow the evolution of a 3 \msun model from the zero-age main sequence (the adopted metallicity is Z=0.02) all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. Emphasis is placed on the evolution of the chemical abundance distribution due to diffusion processes and the role played by hydrogen burning during the white dwarf evolution. Furthermore, the implications of our evolutionary models for the main quantities relevant for adiabatic pulsation analysis are discussed. Interestingly, the shape of the Ledoux term is markedly smoother as compared with previous detailed studies of white dwarfs. This is translated into a different behaviour of the Brunt-Vaisala frequency.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Die Druckerhöhung bei der Implosion von Kavitationsscheiben im Dieseleinspritzsystem

    Get PDF
    &nbsp; &nbsp

    Near-IR Spectra of Red Supergiants and Giants. I- Models with Solar and with Mixing-Induced Surface Abundance Ratios

    Full text link
    We provide a grid of PHOENIX spectra of red giant and supergiant stars, that extend through optical and near-IR wavelengths. For the first time, models are also provided with modified surface abundances of C, N and O, as a step towards accounting for the changes known to occur due to convective dredge-up (and to be enhanced in the case of rotation). The aims are (i) to assess how well current models reproduce observed spectra, (ii) to quantify the effects of the abundance changes on the spectra, and (iii) to determine how these changes affect estimates of fundamental stellar parameters. Observed giant star spectra can be fitted very well at solar metallicity down to about 3400K. Modified surface abundances are preferred in only a minority of cases for luminosity class II, possibly indicating mixing in excess of standard first dredge-up. Supergiant stars show a larger variety of near-IR spectra, and good fits are currently obtained for about one third of the observations only. Modified surface abundances help reproducing strong CN bands, but do not suffice to resolve all the difficulties. The effect of the abundance changes on the estimated Teff depends on the wavelength range of observation and can amount several 100K. Reasons for the remaining discrepancies are discussed.Comment: To be published in A&A. 19 p., 35 postscript figures, uses aa.cls. Selected model spectra available through CD

    Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models

    Get PDF
    We investigate the lifting effect of rotation on the thermal evolution of CO WDs accreting CO-rich matter. We find that rotation induces the cooling of the accreting star so that the delivered gravitational energy causes a greater expansion with respect to the standard non-rotating case. The increase in the surface radius produces a decrease in the surface value of the critical angular velocity and, therefore, the accreting WD becomes gravitationally unbound (Roche instability). This occurrence is due to an increase in the total angular momentum of the accreting WD and depends critically on the amount of specific angular momentum deposited by the accreted matter. If the specific angular momentum of the accreted matter is equal to that of the outer layers of the accreting structure, the Roche instability occurs well before the accreting WD can attain the physical conditions for C-burning. If the values of both initial angular velocity and accretion rate are small, we find that the accreting WD undergoes a secular instability when its total mass approaches 1.4 Msun. At this stage, the ratio between the rotational and the gravitational binding energy of the WD becomes of the order of 0.1, so that the star must deform by adopting an elliptical shape. In this case, since the angular velocity of the WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss of rotational energy and angular momentum via GWR. We find that, independent of the braking efficiency, the WD contracts and achieves the physical conditions suitable for explosive C-burning at the center so that a type Ia supernova event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical Journa

    Solar Neutrinos from CNO Electron Capture

    Full text link
    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.Comment: 4 pages, 1 figure, submitted to Phys. Rev. C; v2 has minor changes including integration over solar volume and addition of missing reference to previous continuum electron capture calculation; v3 has minor changes including addition of references and the correction of a small (about 1%) numerical error in the table

    Double white dwarf mergers and elemental surface abundances in extreme helium and R Coronae Borealis stars

    Full text link
    The surface abundances of extreme helium (EHe) and R Coronae Borealis (RCB) stars are discussed in terms of the merger of a carbon-oxygen white dwarf with a helium white dwarf. The model is expressed as a linear mixture of the individual layers of both constituent white dwarfs, taking account of the specific evolution of each star. In developing this recipe from previous versions, particular attention has been given to the inter-shell abundances of the asymptotic giant branch star which evolved to become the carbon-oxygen white dwarf. Thus the surface composition of the merged star is estimated as a function of the initial mass and metallicity of its progenitor. The question of whether additional nucleosynthesis occurs during the white dwarf merger has been examined. The high observed abundances of carbon and oxygen must either originate by dredge-up from the core of the carbon-oxygen white dwarf during a cold merger or be generated directly by alpha-burning during a hot merger. The presence of large quantities of O18 may be consistent with both scenarios, since a significant O18 pocket develops at the carbon/helium boundary in a number of our post-AGB models. The production of fluorine, neon and phosphorus in the AGB intershell produces n overabundance at the surface of the merged stars, but generally not in sufficient quantity. However, the evidence for an AGB origin for these elements points to progenitor stars with initial masses in the range 1.9 - 3 solar masses. There is not yet sufficient information to discriminate the origin (fossil or prompt) of all the abundance anomalies observed in EHe and RCB stars. Further work is required on argon and s-process elements in the AGB intershell, and on the predicted yields of all elements from a hot merger.Comment: 20 pages, 8 figures, 3 tables, MNRAS in pres

    Rare case of an adult male Montagu's Harrier Circus pygargus over-summering in West Africa, as revealed by GPS tracking

    Get PDF
    Over-summering within or near the African wintering range by immature, non-breeding individuals occurs regularly in several species of long-distance migratory raptors, yet the extent of over-summering in Africa by adult birds remains unclear. In this study, we describe a case of an adult Montagu's Harrier over-summering in Africa, as revealed by GPS tracking. By relating detailed knowledge of the bird's movements to remotely sensed environmental data (normalized difference vegetation index, NDVI), we show that over-summering in this case was likely related to an exceptionally difficult breeding season the previous year rather than an effect of adverse weather conditions encountered during the winter or a failed attempt to migrate. Various factors are discussed as potential driving forces behind the bird's intra-African movements. Finally, we relate the documented case to a large number of North European Montagu's Harriers studied by telemetry and show that over-summering in Africa by adult individuals is indeed a rare event
    • …
    corecore